(2*3.14*(4.5^2))+(2*3.14*(4.5^2)*x)=197.82

Simple and best practice solution for (2*3.14*(4.5^2))+(2*3.14*(4.5^2)*x)=197.82 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2*3.14*(4.5^2))+(2*3.14*(4.5^2)*x)=197.82 equation:



(2*3.14(4.5^2))+(2*3.14(4.5^2)*x)=197.82
We move all terms to the left:
(2*3.14(4.5^2))+(2*3.14(4.5^2)*x)-(197.82)=0
We add all the numbers together, and all the variables
(2*3.14(4.5^2)*x)-70.65=0
We calculate terms in parentheses: +(2*3.14(4.5^2)*x), so:
2*3.14(4.5^2)*x
Wy multiply elements
6x^2
Back to the equation:
+(6x^2)
a = 6; b = 0; c = -70.65;
Δ = b2-4ac
Δ = 02-4·6·(-70.65)
Δ = 1695.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1695.6}}{2*6}=\frac{0-\sqrt{1695.6}}{12} =-\frac{\sqrt{}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1695.6}}{2*6}=\frac{0+\sqrt{1695.6}}{12} =\frac{\sqrt{}}{12} $

See similar equations:

| 28=19+y | | 6+3-x=1 | | X+50+x–10=180 | | (2*3.14*4.5^2)+(2*3.14*4.5^2*x)=197.82 | | -12y+8(23+1y)=18 | | 14y=59 | | 262=1/3(b)(10) | | −11−5a=6 | | -5x+x+5=2(-2x+2)+1 | | 5x/2+x-4/2=11 | | 9h=167 | | 2x+18=12+5x | | X-7(4.66667x+10)=22 | | 40=-16t+64t | | 20-2x^2=28 | | 3(t-7)=5(t-1)–4 | | 9x=11×+7 | | −99=9n | | (7x+9)+(6x+7)=180 | | 21=19+a | | 22=4h–6 | | -23=5f-4f | | y^2-16y-71=0 | | 3y/2-y/3=5(y-4) | | 4(2m-1)=36-2m | | 7(m-2)=2(m+3) | | t+18=28 | | 46=4y | | 11+y-4y=29 | | 2(5p-3)=30 | | 14+6x=-32 | | -12y+8(23+1.5y)=18 |

Equations solver categories